Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons.
نویسندگان
چکیده
We found that, in the mouse visual cortex, action potentials generated in a single layer-2/3 pyramidal (excitatory) neuron can reliably evoke large, constant-latency inhibitory postsynaptic currents in other nearby pyramidal cells. This effect is mediated by axo-axonic ionotropic glutamate receptor-mediated excitation of the nerve terminals of inhibitory interneurons, which connect to the target pyramidal cells. Therefore, individual cortical excitatory neurons can generate inhibition independently from the somatic firing of inhibitory interneurons.
منابع مشابه
GHB depresses fast excitatory and inhibitory synaptic transmission via GABA(B) receptors in mouse neocortical neurons.
Gamma-hydroxybutyrate (GHB) is a drug of abuse which induces sedation and euphoria. However, overdoses can severely depress the level of consciousness or can be fatal especially when combined with other substances. Studies have suggested that the GHB-effects are mediated via actions on thalamocortical pathways and local neocortical circuits, although the effect of GHB at the level of single neo...
متن کاملA Laminar Organization for Selective Cortico-Cortical Communication
The neocortex is central to mammalian cognitive ability, playing critical roles in sensory perception, motor skills and executive function. This thin, layered structure comprises distinct, functionally specialized areas that communicate with each other through the axons of pyramidal neurons. For the hundreds of such cortico-cortical pathways to underlie diverse functions, their cellular and syn...
متن کاملHierarchical Organization of Neocortical Neuron Types
2 Abstract The neocortex consists of many diverse neuron populations distributed across cortical layers having specialized connectivity and projection patterns. Glutamatergic pyramidal cells, which are cortical projection neurons, reside in all layers except layer 1, while GABAergic nonpyramidal cells are ubiquitous throughout all cortical layers. These broad classes of excitatory and inhibitor...
متن کاملIn Vivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent Inhibition
BACKGROUND Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of o...
متن کاملDifferential modulation of synaptic transmission by neuropeptide Y in rat neocortical neurons.
Neuropeptide Y (NPY) is widely expressed throughout the nervous system and is known to reduce excitatory (but also inhibitory) synaptic transmission in many CNS areas, leading to the proposal that it is an endogenous antiepileptic agent. In the neocortex, where NPY is present in gamma-aminobutyric acid (GABA)ergic interneurons, its effects on inhibitory and excitatory synaptic activities have n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 316 5825 شماره
صفحات -
تاریخ انتشار 2007